Introduction
I am going to go for a Raymond Hettinger style presentation, https://www.cs.odu.edu/~tkennedy/cs330/s21/Public/languageResources/#python-programming-videos.
These materials are web-centric (i.e., do not need to be printed and are available at https://www.cs.odu.edu/~tkennedy/numpy-workshop).
Who am I?
I have taught various courses, including:
- CS 300T - Computers in Society
- CS 333 - Programming and Problem Solving
- CS 330 - Object Oriented Programming and Design
- CS 350 - Introduction to Software Engineering
- CS 410 - Professional Workforce Development I
- CS 411W - Professional Workforce Development II
- CS 417 - Computational Methods & Software
Most of my free time is spent writing Python 3 and Rust code, tweaking my Vim configuration, or learning a new (programming) language. My current language of interests are Rust (at the time of writing) and Python (specifically the NumPy library).
Referenced Courses & Materials
I may reference materials (e.g., lecture notes) and topics from various courses, including:
- CS 330 - Object Oriented Programming & Design
- CS 350 - Introduction to Software Engineering
- CS 417 - Computational Methods & Software
I will also reference a couple examples from the previous:
The Broad Strokes
I will focus on:
Overview
What is NumPy?
According to the official NumPy documentation:
NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more.
Retrieved from https://numpy.org/doc/stable/user/whatisnumpy.html